Runtime Support for Scalable Task-parallel Programs

Sriram Krishnamoorthy
Pacific Northwest National Lab
xSIG workshop
May 2018

http://hpc.pnl.gov/people/sriram/
int main () {
 ...
}

Single Program Multiple Data
Task Parallelism

```c
int main () {
    ...
}
```
Task Parallelism

```c
int main () {
    ...
}
```
Task-parallel Abstractions

- Finer specification of concurrency, data locality, and dependences
 - Convey more application information to compiler and runtime

- Adaptive runtime system to manage tasks

- Application writer specifies the computation
 - Writes optimizable code

- Tools to transform code to generate an efficient implementation
The Promise

- Application writer specifies the computation

- Computation mapped to specific execution environment by the software stack

- We are transferring some of the burden away from the programmer
The Challenge

► We are transferring some of the burden to the software stack

► Handling million MPI processes is supposed to be hard; how about billions of tasks?

► What about the software ecosystem?
Tracing and Constraining Work Stealing Schedulers
Research Directions

- Concurrency management and tracing
- Dynamic load balancing
- Data locality optimization
- Task granularity selection
- Data race detection
Recursive Task Parallelism

```javascript
fn() {
  s1;
  async { /*A1*/
    s2;
    finish async s3; //A2
    s4;
  }
  async s5; //A3
  s6;
}
```
Work Stealing

- A worker begins with one/few tasks
 - Tasks spawn more tasks
 - When a worker is out of tasks, it steals from another worker

- A popular scheduling strategy for recursive parallel programs
 - Well-studied load balancing strategy
 - Provably efficient scheduling
 - Understandable space and time bounds
Objective

- Trace execution under work stealing
- Exploit information from trace to perform various optimizations
- Constrain the scheduler to obtain desired behavior
Tracing

Steal tree: low-overhead tracing of work stealing schedulers.
PLDI’13 http://dl.acm.org/citation.cfm?id=2462193
Tracing Work Stealing

- *When* and *where* each task executed

- Captures the order of events for online and offline analysis

- **Challenges**
 - Sheer size of the trace
 - Application perturbation might make it impractical
Tracing Approach: Illustration

- Steals in order of levels
- Almost one steal per level
Using the steal tree to trace each application requires orders of magnitude less storage than naïve tracing. Figure 4.10: Space comparison between naïvely tracing tasks using explicit enumeration (Enum) and using the proposed tracing framework (the steal tree). Total Space (kB)

Small trace sizes, less affected by core count or problem size
Space Overhead: Distributed Memory

Still less than 160MB in total on 32000 cores
Time Overhead: Shared Memory

Time overhead within variation in execution time
Time Overhead: Distributed Memory

Time overhead within variation in execution time
What can we do with a steal tree?
Visualization

- Core utilization plot over time
- Cilk LU benchmark on 24 cores
- Trace size <100KB
Replay

Optimizing data locality for fork/join programs using constrained work stealing.
Replay Schedulers

- **Strict, ordered replay (StOWS)**
 - Exactly reproduce the template schedule
 - Donation of continuations to be stolen

- **Strict, unordered replay (StUWS)**
 - Reproduce the template schedule, but allow the order to deviate (respecting the application’s dependencies)

- **Relaxed work-stealing replay (RelWS)**
 - Reproduce the template schedule as much as possible, but allow workers to deviate when they are idle, by further stealing work
How good are the schedulers?

Relaxed work stealing incurs some overhead because it combines replay and work stealing.
Relaxed Work Stealing: Adaptability I

Slow down one out of 80 workers 4 times

![Graph showing execution time for fib(48) with different work stealing strategies.](image)
Relaxed Work Stealing: Adaptability II

Relaxed replay of schedule from \((p-10)\) workers on \(p\) workers

![Graph showing execution time for different configurations of workers and tasks.](image-url)
Relaxed Work Stealing: Adaptability III

Relaxed work stealing of $\text{fib}(54)$ with a schedule from $\text{fib}(48)$

![Graph showing performance comparison between Trace, StUWS, StOWS, and RelWS for $\text{fib}(48)$ and $\text{fib}(48+6)$]
Retentive Stealing

Work stealing and persistence-based load balancers for iterative overdecomposed applications.
HPDC’12 http://dl.acm.org/citation.cfm?id=2287103
Iterative Applications

- Applications repeatedly executing the same computation
 - Many scientific applications are iterative

- Static or slowly evolving execution characteristics

- Execution characteristics preclude static balancing
 - Application characteristics (comm. pattern, sparsity, …)
 - Execution environment (topology, asymmetry, …)
Intuition: Stealing indicates poor initial balance
Retentive stealing

- Use work stealing to load balance within each phase
 - Persistence-based load balancers only rebalance across phases

- Begin next iteration with a trace of the previous iteration’s schedule
Retentive stealing results

Retentive stealing stabilizes stealing costs
Retentive Stealing Space Overhead: HF

- Execution on Titan
- Space overhead increase but still same manageable across iterations
Retentive Stealing Space Overhead: TCE

Execution on Titan

Space overhead stays the same across iterations
Data Locality Optimization: NUMA Locality

Optimizing data locality for fork/join programs using constrained work stealing. SC’14. http://dl.acm.org/citation.cfm?id=2683687
Constrained Schedules in OpenMP

```c
#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)
    A[i] = B[i] = 0;  //init

#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)
    B[i] = A[i];  //memcpy
```

Empirical study

- Parallel memory copy of 8GB of data, using OpenMP schedule static
- 80-core system with eight NUMA domains, first-touch policy
- Execution time: 169ms
Cilk Scheduling

```c

cilk_for (i = 0; i < size; i++)
    A[i] = B[i] = 0; //init

cilk_for (i = 0; i < size; i++)
    B[i] = A[i]; //memcpy

```

Empirical study

- Parallel memory copy of 8GB of data, using MIT Cilk or OpenMP 3.0 tasks
- Execution time: **436ms** (Cilk/OMP task) vs **169ms** (OMP static)
Can we constrain the scheduler to improve NUMA locality?
Solution: Evolve a Schedule

Capture an application phase’s steal tree

Is load balanced?

Yes

Strict ordered replay

No

Data localization

Adapt schedule using relaxed work stealing

Load imbalance observed?

Yes

No

Sriram Krishnamoorthy
Alternative Strategy: Manual Steal Tree Construction

- Explicit markup of steal tree in the user program
- Useful in non-iterative applications
Data Redistribution Cost

First few iterations, data is redistributed (copied) to match a given schedule
Benchmarks: Iterative Matching Structure

Extract template schedule, apply RelWS for five iterations until convergence, then use StOWS
Benchmarks: Iterative Differing Structure

Start with random work stealing on kernel, refine with RelWS until convergence, then use StOWS
We evaluate two approaches: using the same schedule across all kernels, and using a different schedule for each kernel.
Benchmarks: Non-iterative Matching Structure

Reuse schedule from initialization for other phases with StUWS
Task Granularity Selection

Optimizing data locality for fork/join programs using constrained work stealing.
Task granularity selection

- A key challenge for task-parallel programs

- Trade-off
 - Expose more concurrency
 - Achieve good sequential performance with a coarse grain size
Observation

- Concurrency only need to be exposed to achieve load balance
 - Once load is balanced, exposed concurrency can be “turned off”

- We can coax the scheduler to select coarser grained work units
Iterative Granularity Selection

Start with small grain size

Relaxed work stealing → schedule

Needs coarsening?

Yes → Drop steal tree leaves

No → Replace leaves with sequential (coarse) tasks
Dynamic Granularity Selection: heat

Iterative locality optimization with grain size selection
Dynamic Granularity Selection: cg

![Graph showing speedup vs number of threads for different row counts and iterative vs dynamic selection methods.]

- 1024-Rows Iterative
- 128-Rows Iterative
- 32-Rows Iterative
- 32-Rows Dynamic

Count

- 32 Rows
- 4k Rows
- 512 Rows
- 16k Rows

Sample 1
Sample 2
Sample 3

Sriram Krishnamoorthy
Data Race Detection

Steal tree: low-overhead tracing of work stealing schedulers.
PLDI’13 http://dl.acm.org/citation.cfm?id=2462193
Data Race Detection

- Detect conflicting operations in a fork/join program

- Key check:
 - Determine if two memory operation can execute in parallel
 - For any possible schedule
Two steps s1 and s2 may execute in parallel if:

- l1 is least common ancestor (LCA) of s1 and s2 in DPST
- c1 is ancestor of s1 and immediate child of l1
- c1 is an async node
Steal-Tree Aided LCA Computation

- The nodes of the DPST tree can be annotated with the nodes of steal tree they belong to
- Data race detection involves multiple walks of the DPST for each memory access checked

```python
lca(s1, s2):
    if (s1.st_node == s2.st_node)
        return dpst_lca(s1, s2); //dpst walk
    if (s1.st_node.level > s2.st_node.level)
        return lca(s1.st_node.victim, s2)
    return lca(s1, s2.st_node.victim)
```
Application: Data Race Detection

Significant reduction in the number of DPST edges traversed
Other Results

- Locality-aware task graph scheduling
 - Color-based constraints on work stealing schedulers

- Cache locality optimization
 - Effect-based splicing of concurrent tasks to improve cache locality

- Speculative work stealing
 - Expose greater concurrency

- Localized parallel failure recovery
Lessons Learned

- Random work stealing with ability to constrain its behavior can bring several benefits

- Steal trees can be useful in a variety of contexts
 - Retentive stealing
 - Data locality optimization
 - Task granularity selection
 - Data race detection
 - ...

- Need to design interfaces to programmatically extract and use work stealing schedules
Continuing Research Challenges

- Recursive program specification
- Enabling user to express high level intent and properties
- Compiler analysis and transformation
- Runtime techniques
 - Scheduling and load balancing
 - Fault tolerance
 - Power/energy efficiency
 - Data locality
- Correctness and performance tools
- Architectural and other low-level support for such abstractions
Conclusions

- Abstractions supporting task parallelism can meet performance and programmability challenges.

- Runtime systems can adapt productively.
 - Changing the load balancer or adding fault tolerance involved no change in the user code.

- Maturing an execution paradigm requires lots of research and experience.
Thank You!